Animal Reproduction (AR)
https://animal-reproduction.org/article/doi/10.1590/1984-3143-AR2023-0131
Animal Reproduction (AR)
ORIGINAL ARTICLE

RNA sequencing and gene co-expression network of in vitro matured oocytes and blastocysts of buffalo

Priscila Di Paula Bessa Santana; Kenny da Costa Pinheiro; Lino César de Souza Pereira; Soraya Silva Andrade; Flávia Figueira Aburjaile; Priscilla do Carmo de Azevedo Ramos; Eduardo Baia de Souza; Nathalia Nogueira da Costa; Marcela da Silva Cordeiro; Simone do Socorro Damasceno Santos; Moysés dos Santos Miranda; Rommel Thiago Jucá Ramos; Artur Luiz da Costa da Silva

Downloads: 0
Views: 304

Abstract

In reproductive technologies, uncovering the molecular aspects of oocyte and embryo competence under different conditions is crucial for refining protocols and enhancing efficiency. RNA-seq generates high-throughput data and provides transcriptomes that can undergo additional computational analyses. This study presented the transcriptomic profiles of in vitro matured oocytes and blastocysts produced in vitro from buffalo crossbred (Bubalus bubalis), coupled with gene co-expression and module preservation analysis. Cumulus Oophorus Complexes, obtained from slaughterhouse-derived ovaries, were subjected to in vitro maturation to yield metaphase II oocytes (616) or followed in vitro fertilization and culture to yield blastocysts for sequencing (526). Oocyte maturation (72%, ±3.34 sd) and embryo development (21.3%, ±4.18 sd) rates were obtained from three in vitro embryo production routines following standard protocols. Sequencing of 410 metaphase II oocytes and 70 hatched blastocysts (grade 1 and 2) identified a total of 13,976 genes, with 62% being ubiquitously expressed (8,649). Among them, the differentially expressed genes (4,153) and the strongly variable genes with the higher expression (fold-change above 11) were highlighted in oocytes (BMP15, UCHL1, WEE1, NLRPs, KPNA7, ZP2, and ZP4) and blastocysts (APOA1, KRT18, ANXA2, S100A14, SLC34A2, PRSS8 and ANXA2) as representative indicators of molecular quality. Additionally, genes exclusively found in oocytes (224) and blastocysts (2,200) with specific biological functions were identified. Gene co-expression network and module preservation analysis revealed strong preservation of functional modules related to exosome components, steroid metabolism, cell proliferation, and morphogenesis. However, cell cycle and amino acid transport modules exhibited weak preservation, which may reflect differences in embryo development kinetics and the activation of cell signaling pathways between buffalo and bovine. This comprehensive transcriptomic profile serves as a valuable resource for assessing the molecular quality of buffalo oocytes and embryos in future in vitro embryo production assays.

Supplementary material accompanies this paper.

Keywords

blastocyst, buffalo, oocyte, RNA-seq, co-expression networks

References

Abdoon AS, Gabler C, Holder C, Kandil OM, Einspanier R. Seasonal variations in developmental competence and relative abundance of gene transcripts in buffalo (Bubalus bubalis) oocytes. Theriogenology. 2014;82(8):1055-67. http://doi.org/10.1016/j.theriogenology.2014.07.008. PMid:25156970.

Anders S, Pyl PT, Huber W. HTSeq: a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166-9. http://doi.org/10.1093/bioinformatics/btu638. PMid:25260700.

Angel-Velez D, Meese T, Hedia M, Fernandez-Montoro A, De Coster T, Pascottini OB, Van Nieuwerburgh F, Govaere J, Van Soom A, Pavani K, Smits K. Transcriptomics reveal molecular differences in equine oocytes vitrified before and after In Vitro maturation. Int J Mol Sci. 2023;24(8):6915. http://doi.org/10.3390/ijms24086915. PMid: 37108081.

Araujo FA, Barh D, Silva A, Guimarães L, Ramos RTJGO. FEAT: a rapid web-based functional annotation tool for genomic and transcriptomic data. Sci Rep. 2018;8(1):1794. http://doi.org/10.1038/s41598-018-20211-9. PMid:29379090.

Babraham Bioinformatics [homepage on the Internet]. Cambridge, UK: Babraham Institute. FastQC A Quality Control tool for High Throughput Sequence Data, Version 0.11.5; 2016 [cited 2017 Jul 20]. Available from: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.

Baruselli PS, Carvalho JGS, Elliff FM, Silva JCBD, Chello D, Carvalho NAT. Embryo transfer in buffalo (Bubalus bubalis). Theriogenology. 2020;150:221-8. http://doi.org/10.1016/j.theriogenology.2020.01.037. PMid:31996292.

Basson MA. Signaling in cell differentiation and morphogenesis. Cold Spring Harb Perspect Biol. 2012;4(6):a008151. http://doi.org/10.1101/cshperspect.a008151. PMid:22570373.

Bauer BK, Isom SC, Spate LD, Whitworth KM, Spollen WG, Blake SM, Springer GK, Murphy CN, Prather RS. Transcriptional profiling by deep sequencing identifies differences in mRNA transcript abundance in in vivo-derived versus In Vitro-. Biol Reprod. 2010;83(5):791-8. http://doi.org/10.1095/biolreprod.110.085936. PMid:20668257.

Bazer FW. Pregnancy recognition signaling mechanisms in ruminants and pigs. J Anim Sci Biotechnol. 2013;4(1):23. http://doi.org/10.1186/2049-1891-4-23. PMid:23800120.

Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol. 1995;57(1):289-300. http://doi.org/10.1111/j.2517-6161.1995.tb02031.x.

Bernatik O, Radaszkiewicz T, Behal M, Dave Z, Witte F, Mahl A, Cernohosky NH, Krejci P, Stricker S, Bryja V. A novel role for the BMP antagonist noggin in sensitizing cells to non-canonical Wnt-5a/Ror2/disheveled pathway activation. Front Cell Dev Biol. 2017;5:47. http://doi.org/10.3389/fcell.2017.00047. PMid:28523267.

Bioconductor [homepage on the Internet]. Open Source Software for Bioinformatics; 2001 [cited 2017 Sep 15]. Available from: https://bioconductor.org/packages/release/BiocViews.html#___Software.

Boroviak T, Stirparo GG, Dietmann S, Hernando-Herraez I, Mohammed H, Reik W, Smith A, Sasaki E, Nichols J, Bertone P. Single cell transcriptome analysis of human, marmoset and mouse embryos reveals common and divergent features of preimplantation development. Development. 2018;145(21):dev167833. http://doi.org/10.1242/dev.167833. PMid: 30413530.

Bunel A, Jorssen EP, Merckx E, Leroy JL, Bols PE, Sirard MA. Individual bovine in vitro embryo production and cumulus cell transcriptomic analysis to distinguish cumulus-oocyte complexes with high or low developmental potential. Theriogenology. 2015;83(2):228-37. http://doi.org/10.1016/j.theriogenology.2014.09.019. PMid:25442391.

Canosa S, Adriaenssens T, Coucke W, Dalmasso P, Revelli A, Benedetto C, Smitz J. Zona pellucida gene mRNA expression in human oocytes is related to oocyte maturity, zona inner layer retardance and fertilization competence. Mol Hum Reprod. 2017;23(5):292-303. http://doi.org/10.1093/molehr/gax008. PMid:28204536.

Cao S, Han J, Wu J, Li Q, Liu S, Zhang W, Pei Y, Ruan X, Liu Z, Wang X, Lim B, Li N. Specific gene-regulation networks during the pre-implantation development of the pig embryo as revealed by deep sequencing. BMC Genomics. 2014;15(1):4. http://doi.org/10.1186/1471-2164-15-4. PMid:24383959.

Capra E, Kosior MA, Cocchia N, Lazzari B, Del Prete C, Longobardi V, Pizzi F, Stella A, Frigerio R, Cretich M, Consiglio AL, Gasparrini B. Variations of follicular fluid extracellular vesicles miRNAs content in relation to development stage and season in buffalo. Sci Rep. 2022;12(1):14886. http://doi.org/10.1038/s41598-022-18438-8. PMid:36050481.

Capra E, Lazzari B, Russo M, Kosior MA, Valle GD, Longobardi V, Stella A, Consiglio AL, Gasparrini B. Seasonal effects on miRNA and transcriptomic profile of oocytes and follicular cells in buffalo (Bubalus bubalis). Sci Rep. 2020;10(1):13557. http://doi.org/10.1038/s41598-020-70546-5. PMid:32782284.

CEUA/UFPA [homepage on the Internet]. Comitê de Ética da Universidade Federal do Pará; 2024 [cited 2024 May 20]. Available from: https://ceua.ufpa.br/.

Chen K, Liang J, Qin T, Zhang Y, Chen X, Wang Z. The role of extracellular vesicles in embryo implantation. Front Endocrinol (Lausanne). 2022;13:809596. http://doi.org/10.3389/fendo.2022.809596. PMid:35154016.

Chitwood JL, Rincon G, Kaiser GG, Medrano JF, Ross PJ. RNA-seq analysis of single bovine blastocysts. BMC Genomics. 2013;14(1):350. http://doi.org/10.1186/1471-2164-14-350. PMid:23705625.

Conlon FL, Lyons KM, Takaesu N, Barth KS, Kispert A, Herrmann B, Robertson EJ. A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development. 1994;120(7):1919-28. http://doi.org/10.1242/dev.120.7.1919. PMid:7924997.

Costa NN, Brito KN, Santana PD, Cordeiro MS, Silva TV, Santos AX, Ramos PC, Santos SS, King WA, Miranda MS, Ohashi OM. Effect of cortisol on bovine oocyte maturation and embryo development in vitro. Theriogenology. 2016;85(2):323-9. http://doi.org/10.1016/j.theriogenology.2015.08.010. PMid:26456184.

Di Francesco S, Novoa MVS, Vecchio D, Neglia G, Boccia L, Campanile G, Zicarelli L, Gasparrini B. Ovum pick-up and in vitro embryo production (OPU-IVEP) in Mediterranean Italian buffalo performed in different seasons. Theriogenology. 2012;77(1):148-54. http://doi.org/10.1016/j.theriogenology.2011.07.028. PMid:21872310.

Du L, Gu T, Zhang Y, Huang Z, Wu N, Zhao W, Chang G, Xu Q, Chen G. Transcriptome profiling to identify key mediators of granulosa cell proliferation upon FSH stimulation in the goose (Anser cygnoides). Br Poult Sci. 2018;59(4):416-21. http://doi.org/10.1080/00071668.2018.1459474. PMid:29723039.

Feuerstein P, Puard V, Chevalier C, Teusan R, Cadoret V, Guerif F, Houlgatte R, Royere D. Genomic assessment of human cumulus cell marker genes as predictors of oocyte developmental competence: impact of various experimental factors. PLoS One. 2012;7(7):e40449. http://doi.org/10.1371/journal.pone.0040449. PMid:22848380.

Gasparrini B, Neglia G, Di Palo R, Vecchio D, Albero G, Esposito L, Campanile G, Zicarelli L. Influence of oocyte donor on in vitro embryo production in buffalo. Anim Reprod Sci. 2014;144(3-4):95-101. http://doi.org/10.1016/j.anireprosci.2013.11.010. PMid:24374181.

Gilchrist GC, Tscherner A, Nalpathamkalam T, Merico D, LaMarre J. MicroRNA expression during bovine oocyte maturation and fertilization. Int J Mol Sci. 2016;17(3):396. http://doi.org/10.3390/ijms17030396. PMid:26999121.

GO FEAT [homepage on the Internet]. In GitHub platform, fabriciopa/gofeat: a rapid web-based functional annotation tool for genomic and transcriptomic data; 2017 [cited 2017 Sep 15]. Available from: https://github.com/fabriciopa/gofeat.

Goel P, Malpotra S, Shyam S, Kumar D, Singh MK, Palta P. Global MicroRNA expression profiling of buffalo (Bubalus bubalis) embryos at different developmental stages produced by somatic cell nuclear transfer and in-vitro fertilization using RNA Sequencing. Genes (Basel). 2022;13(3):453. http://doi.org/10.3390/genes13030453. PMid: 35328007.

Goossens K, Tesfaye D, Rings F, Schellander K, Hölker M, Van Poucke M, Zeveren AV, Lemahieu I, Soom AV, Peelman LJ. Suppression of keratin 18 gene expression in bovine blastocysts by RNA interference. Reprod Fertil Dev. 2010;22(2):395-404. http://doi.org/10.1071/RD09080. PMid:20047725.

Graf A, Krebs S, Zakhartchenko V, Schwalb B, Blum H, Wolf E. Fine mapping of genome activation in bovine embryos by RNA sequencing. Proc Natl Acad Sci USA. 2014;111(11):4139-44. http://doi.org/10.1073/pnas.1321569111. PMid:24591639.

Granier C, Gurchenkov V, Perea-Gomez A, Camus A, Ott S, Papanayotou C, Iranzo J, Moreau A, Reid J, Koentges G, Sabéran-Djoneidi D, Collignon J. Nodal cis-regulatory elements reveal epiblast and primitive endoderm heterogeneity in the peri-implantation mouse embryo. Dev Biol. 2011;349(2):350-62. http://doi.org/10.1016/j.ydbio.2010.10.036. PMid:21047506.

Hanon Laboratory [homepage on the Internet]. NY: Cold Spring Harbor Laboratory. FASTX-Toolkit Version 0.0.13; 2010 [cited 2017 Jul 20]. Available from: http://hannonlab.cshl.edu/fastx_toolkit/.

Holm P, Booth PJ, Schmidt MH, Greve T, Callesen H. High bovine blastocyst development in a static in vitro production system using SOFaa medium supplemented with sodium citrate and myo-inositol with or without serum-proteins. Theriogenology. 1999;52(4):683-700. http://doi.org/10.1016/S0093-691X(99)00162-4. PMid:10734366.

Jia J, Gou J, Zhao X, Yi T, Li Z. Apolipoprotein A1 and heterogeneous nuclear ribonucleoprotein E1 implicated in the regulation of embryo implantation by inhibiting lipid peroxidation. Reprod Biomed Online. 2016;33(5):635-45. http://doi.org/10.1016/j.rbmo.2016.07.011. PMid:27567428.

Jiang Z, Dong H, Zheng X, Marjani SL, Donovan DM, Chen J, Tian XC. mRNA levels of imprinted genes in bovine in vivo oocytes, embryos and cross species comparisons with humans, mice and pigs. Sci Rep. 2015;5(1):17898. http://doi.org/10.1038/srep17898. PMid:26638780.

Jiang Z, Sun J, Dong H, Luo O, Zheng X, Obergfell C, Tang Y, Bi J, O’Neill R, Ruan Y, Chen J, Tian X. Transcriptional profiles of bovine in vivo pre-implantation development. BMC Genomics. 2014;15(1):756. http://doi.org/10.1186/1471-2164-15-756. PMid:25185836.

Kandil OM, Ghanem N, Abdoon ASS, Hölker M, Phatsara C, Schellander K, Tesfaye D. Transcriptional analysis of buffalo (Bubalus bubalis) oocytes during in vitro maturation using bovine cDNA microarray. Reprod Domest Anim. 2010;45(1):63-74. http://doi.org/10.1111/j.1439-0531.2008.01238.x. PMid:19144006.

Kelly OG, Pinson KI, Skarnes WC. The Wnt co-receptors Lrp5 and Lrp6 are essential for gastrulation in mice. Development. 2004;131(12):2803-15. http://doi.org/10.1242/dev.01137. PMid:15142971.

Kim JY, Burghardt RC, Wu G, Johnson GA, Spencer TE, Bazer FW. Select nutrients in the ovine uterine lumen. VII. Effects of arginine, leucine, glutamine, and glucose on trophectoderm cell signaling, proliferation, and migration. Biol Reprod. 2011;84(1):62-9. http://doi.org/10.1095/biolreprod.110.085738. PMid:20844282.

Kropp J, Khatib H. Characterization of microRNA in bovine in vitro culture media associated with embryo quality and development. J Dairy Sci. 2015a;98(9):6552-63. http://doi.org/10.3168/jds.2015-9510. PMid:26142856.

Kropp J, Khatib H. mRNA fragments in in vitro culture media are associated with bovine preimplantation embryonic development. Front Genet. 2015b;6:273. http://doi.org/10.3389/fgene.2015.00273. PMid:26379701.

Kumar P, Verma A, Roy B, Rajput S, Ojha S, Anand S, Yadav P, Arora J, De S, Goswami SL, Datta TK. Effect of varying glucose concentrations during In Vitro maturation and embryo culture on efficiency of In Vitro embryo production in buffalo. Reprod Domest Anim. 2012;47(2):269-73. http://doi.org/10.1111/j.1439-0531.2011.01849.x. PMid:21762215.

Kumar S, Chaves MS, da Silva AFB, Vale WG, Filho STR, Ferreira-Silva JC, Melo LM, de Figueiredo Freitas VJ. Factors affecting the in vitro embryo production in buffalo (Bubalus bubalis): a review. Vet Med (Praha). 2023;68(2):45-56. http://doi.org/10.17221/48/2022-VETMED.

Labrecque R, Sirard MA. The study of mammalian oocyte competence by transcriptome analysis: progress and challenges. Mol Hum Reprod. 2014;20(2):103-16. http://doi.org/10.1093/molehr/gat082. PMid:24233546.

Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;29(9):559. https://doi:10.1186/1471-2105-9-559. PMID: 19114008.

Langfelder P, Luo R, Oldham MC, Horvath S. Is my network module preserved and reproducible? PLOS Comput Biol. 2011;7(1):e1001057. http://doi.org/10.1371/journal.pcbi.1001057. PMid:21283776.

Leibfried L, First NL. Characterization of bovine follicular oocytes and their ability to mature in vitro. J Anim Sci. 1979;48(1):76-86. http://doi.org/10.2527/jas1979.48176x. PMid:573253.

Li Y, Sun J, Ling Y, Ming H, Chen Z, Fang F, Liu Y, Cao H, Ding J, Cao Z, Zhang X, Bondioli K, Jiang Z, Zhang Y. Transcription profiles of oocytes during maturation and embryos during preimplantation development in vivo in the goat. Reprod Fertil Dev. 2020;32(7):714-25. http://doi.org/10.1071/RD19391. PMid:32317096.

Lonergan P, Fair T, Corcoran D, Evans AC. Effect of culture environment on gene expression and developmental characteristics in IVF-derived embryos. Theriogenology. 2006;65(1):137-52. http://doi.org/10.1016/j.theriogenology.2005.09.028. PMid:16289260.

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. http://doi.org/10.1186/s13059-014-0550-8. PMid:25516281.

Luo F, Jia R, Ying S, Wang Z, Wang F. Analysis of genes that influence sheep follicular development by different nutrition levels during the luteal phase using expression profiling. Anim Genet. 2016;47(3):354-64. http://doi.org/10.1111/age.12427. PMid:26970339.

Macaulay AD, Gilbert I, Scantland S, Fournier E, Ashkar F, Bastien A, Saadi HAS, Gagné D, Sirard M, Khandjian ÉW, Richard FJ, Hyttel P, Robert C. Cumulus cell transcripts transit to the bovine oocyte in preparation for maturation. Biol Reprod. 2016;94(1):16. http://doi.org/10.1095/biolreprod.114.127571. PMid:26586844.

Marin DFD, de Souza EB, de Brito VC, Nascimento CV, Ramos AS, Rolim ST Fo, da Costa NN, Cordeiro MDS, Santos SDSD, Ohashi OM. In vitro embryo production in buffaloes: from the laboratory to the farm. Anim Reprod. 2019a;16(2):260-266. http://doi.org/10.21451/1984-3143-AR2018-0135. PMid: 33224285.

Marin DFD, da Costa NN, Santana PPB, de Souza EB, Ohashi OM. Importance of lipid metabolism on oocyte maturation and early embryo development: can we apply what we know to buffalo? Anim Reprod Sci. 2019b;211:106220. http://doi.org/10.1016/j.anireprosci.2019.106220. PMid:31785645.

Menchero S, Rayon T, Andreu MJ, Manzanares M. Signaling pathways in mammalian preimplantation development: linking cellular phenotypes to lineage decisions. Dev Dyn. 2017;246(4):245-61. http://doi.org/10.1002/dvdy.24471. PMid:27859869.

Milazzotto MP, Goissis MD, Chitwood JL, Annes K, Soares CA, Ispada J, Assumpção MEOÁ, Ross PJ. Early cleavages influence the molecular and the metabolic pattern of individually cultured bovine blastocysts. Mol Reprod Dev. 2016;83(4):324-36. http://doi.org/10.1002/mrd.22619. PMid:26822777.

Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5(7):621-8. http://doi.org/10.1038/nmeth.1226. PMid:18516045.

Murakami M, Ichisaka T, Maeda M, Oshiro N, Hara K, Edenhofer F, Kiyama H, Yonezawa K, Yamanaka S. mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Mol Cell Biol. 2004;24(15):6710-8. http://doi.org/10.1128/MCB.24.15.6710-6718.2004. PMid:15254238.

Myrvang HK, Guo X, Li C, Dekker LV. Protein interactions between surface annexin A2 and S100A10 mediate adhesion of breast cancer cells to microvascular endothelial cells. FEBS Lett. 2013;587(19):3210-5. http://doi.org/10.1016/j.febslet.2013.08.012. PMid:23994525.

Neglia G, Gasparrini B, Caracciolo Di Brienza V, Di Palo R, Campanile G, Presicce GA, Zicarelli L. Bovine and buffalo in vitro embryo production using oocytes derived from abattoir ovaries or collected by transvaginal follicle aspiration. Theriogenology. 2003;59(5–6):1123-30. http://doi.org/10.1016/S0093-691X(02)01170-6. PMid:12527061.

NIH [homepage on the Internet]. National Center for Biotechnology Information. BioProject database, accession number PRJNA832476; 2022 [cited 2022 Apr 26]. Available from: https://www.ncbi.nlm.nih.gov/bioproject/.

Østrup O, Olbricht G, Østrup E, Hyttel P, Collas P, Cabot R. RNA profiles of porcine embryos during genome activation reveal complex metabolic switch sensitive to in vitro conditions. PLoS One. 2013;8(4):e61547. http://doi.org/10.1371/journal.pone.0061547. PMid:23637850.

Parrish JJ, Susko-Parrish J, Winer MA, First NL. Capacitation of bovine sperm by heparin. Biol Reprod. 1988;38(5):1171-80. http://doi.org/10.1095/biolreprod38.5.1171. PMid:3408784.

Rabaglino MB, Forde N, Besenfelder U, Havlicek V, Blum H, Graf A, Wolf E, Lonergan P. Maternal metabolic status and in-vitro culture conditions during embryonic genome activation deregulate the expression of energy-related genes in the bovine 16-cells embryo. PLoS One. 2023;18(8):e0290689. http://doi.org/10.1371/journal.pone.0290689. PMid: 37624829.

Ramsköld D, Wang ET, Burge CB, Sandberg R. An abundance of ubiquitously expressed genes revealed by tissue transcriptome sequence data. PLOS Comput Biol. 2009;5(12):e1000598. http://doi.org/10.1371/journal.pcbi.1000598. PMid:20011106.

Rebsamen M, Pochini L, Stasyk T, de Araujo MEG, Galluccio M, Kandasamy RK, Snijder B, Fauster A, Rudasheskaya EL, Bruckner M, Scorzoni S, Filipek PA, Huber KVM, Bigenzahn JW, Heinz LX, Kraft C, Bennett KL, Indiveri C, Huber LA, Superti-Furga G. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature. 2015;519(7544):477-81. http://doi.org/10.1038/nature14107. PMid:25561175.

Redel BK, Brown AN, Spate LD, Whitworth KM, Green JA, Prather RS. Glycolysis in preimplantation development is partially controlled by the warburg effect. Mol Reprod Dev. 2012;79(4):262-71. http://doi.org/10.1002/mrd.22017. PMid:22213464.

Redel BK, Tessanne KJ, Spate LD, Murphy CN, Prather RS. Arginine increases development of in vitro-produced porcine embryos and affects the protein arginine methyltransferase–dimethylarginine dimethylaminohydrolase–nitric oxide axis. Reprod Fertil Dev. 2015;27(4):655-66. http://doi.org/10.1071/RD14293. PMid:25765074.

Rehman SU, Hassan FU, Luo X, Li Z, Liu Q. Whole-genome sequencing and characterization of buffalo genetic resources: recent advances and future challenges. Animals (Basel). 2021;11(3):904. http://doi.org/10.3390/ani11030904. PMid:33809937.

Reyes JM, Chitwood JL, Ross PJ. RNA-Seq profiling of single bovine oocyte transcript abundance and its modulation by cytoplasmic polyadenylation. Mol Reprod Dev. 2015;82(2):103-14. http://doi.org/10.1002/mrd.22445. PMid:25560149.

Ruan YC, Guo JH, Liu X, Zhang R, Tsang LL, Dong JD, Chen H, Yu MK, Jiang X, Zhang XH, Fok KL, Chung YW, Huang H, Zhou WL, Chan HC. Activation of the epithelial Na+ channel triggers prostaglandin E2 release and production required for embryo implantation. Nat Med. 2012;18(7):1112-7. http://doi.org/10.1038/nm.2771. PMid:22729284.

Santos SSD, Dantas JK, Miranda MS, Biondi FC, Ohashi OM. Cinética da maturação nuclear in vitro de oócitos bubalinos. Braz J Vet Res Anim Sci. 2002;39(5):266-70. http://doi.org/10.1590/S1413-95962002000500009.

Shibasaki Y, Etoh N, Hayasaka M, Takahashi M, Kakitani M, Yamashita T, Tomizuka K, Hanaoka K. Targeted deletion of the tybe IIb Na+-dependent Pi-co-transporter, NaPi-IIb, results in early embryonic lethality. Biochem Biophys Res Commun. 2009;381(4):482-6. http://doi.org/10.1016/j.bbrc.2009.02.067. PMid:19233126.

Singh P, Saxena R, Srinivas G, Pande G, Chattopadhyay A. Cholesterol biosynthesis and homeostasis in regulation of the cell cycle. PLoS One. 2013;8(3):e58833. http://doi.org/10.1371/journal.pone.0058833. PMid:23554937.

Song X, Li T, Xiong X, Shan H, Feng T, Cui K, Shi D, Liu Q, Li Z. RNA-seq reveals the underlying molecular mechanism of first cleavage time affecting porcine embryo development. Genes (Basel). 2022;13(7):1251. http://doi.org/10.3390/genes13071251. PMid:35886034.

Sood TJ, Lagah SV, Mukesh M, Singla SK, Chauhan MS, Manik RS, Palta P. RNA sequencing and transcriptome analysis of buffalo (Bubalus bubalis) blastocysts produced by somatic cell nuclear transfer and in vitro fertilization. Mol Reprod Dev. 2019;86(9):1149-67. http://doi.org/10.1002/mrd.23233. PMid:31304661.

Spate LD, Brown A, Redel BK, Whitworth KM, Prather RS. PS48 can replace bovine serum albumin in pig embryo culture medium, and improve in vitro embryo development by phosphorylating AKT. Mol Reprod Dev. 2015;82(4):315-20. http://doi.org/10.1002/mrd.22474. PMid:25776657.

Strazzullo M, Gasparrini B, Neglia G, Balestrieri ML, Francioso R, Rossetti C, Nassa G, De Filippo MR, Weisz A, Di Francesco S, Vecchio D, D’Esposito M, D’Occhio MJ, Zicarelli L, Campanile G. Global transcriptome profiles of italian mediterranean buffalo embryos with normal and retarded growth. PLoS One. 2014;9(2):e90027. http://doi.org/10.1371/journal.pone.0090027. PMid:24587197.

Stringfellow DA, Seidel SM. Manual of the International Embryo Transfer Society. 3rd ed. Champaign: International Embryo Transfer Society, IETS; 1998.

Sudiman J, Sutton-McDowall ML, Ritter LJ, White MA, Mottershead DG, Thompson JG, Gilchrist RB. Bone morphogenetic protein 15 in the pro-mature complex form enhances bovine oocyte developmental competence. PLoS One. 2014;9(7):e103563. http://doi.org/10.1371/journal.pone.0103563. PMid:25058588.

Tadros W, Lipshitz HD. The maternal-to-zygotic transition: a play in two acts. Development. 2009;136(18):3033-42. http://doi.org/10.1242/dev.033183. PMid:19700615.

Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold B, Pachter L. Transcript assembly and abundance estimation from RNA-Seq reveals thousands of new transcripts and switching among isoforms. Nat Biotechnol. 2010;28(5):511-5. http://doi.org/10.1038/nbt.1621. PMid:20436464.

Tribulo P, Leão BCS, Lehloenya KC, Mingoti GZ, Hansen PJ. Consequences of endogenous and exogenous WNT signaling for development of the preimplantation bovine embryo. Biol Reprod. 2017;96(6):1129-41. http://doi.org/10.1093/biolre/iox048. PMid:28575156.

Tripathi A, Kumar KVP, Chaube SK. Meiotic cell cycle arrest in mammalian oocytes. J Cell Physiol. 2010;223(3):592-600. http://doi.org/10.1002/jcp.22108. PMid:20232297.

Torrent Suit Software [homepage on the Internet]. Mapping Alignment Program 5.2.0 Release; 2016 [cited 2017 Jul 25]. Available from: https://github.com/iontorrent/TS/tree/master/Analysis/TMAP.

Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029-33. http://doi.org/10.1126/science.1160809. PMid:19460998.

Wang B, Ye TM, Lee KF, Chiu PCN, Pang RTK, Ng EHY, Yeung WSB. Annexin A2 acts as an adhesion molecule on the endometrial epithelium during implantation in mice. PLoS One. 2015;10(10):e0139506. http://doi.org/10.1371/journal.pone.0139506. PMid:26444699.

Wang H, Chen W, Shen P, Feng Y, Shi D, Lu F. Follistatin (FST) is expressed in buffalo (Bubalus bubalis) ovarian follicles and promotes oocyte maturation and early embryonic development. Reprod Domest Anim. 2023a;58(12):1718-31. http://doi.org/10.1111/rda.14490. PMid:37917549.

Wang J, Chen H, Zhang Y, Jiang S, Zeng X, Shen H. Comprehensive analysis of differentially expressed CircRNAs in the ovaries of low- and high-fertility sheep. Animals (Basel). 2023b;13(2):236. http://doi.org/10.3390/ani13020236. PMid: 36670776.

Wang X, Park KE, Koser S, Liu S, Magnani L, Cabot RA. KPNA7, an oocyte- and embryo-specific karyopherin α subtype, is required for porcine embryo development. Reprod Fertil Dev. 2012;24(2):382-91. http://doi.org/10.1071/RD11119. PMid:22281085.

Xue Z, Huang K, Cai C, Cai L, Jiang C, Feng Y, Liu Z, Zeng Q, Cheng L, Sun YE, Liu J, Horvath S, Fan G. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature. 2013;500(7464):593-7. http://doi.org/10.1038/nature12364. PMid:23892778.

Yanagimachi R. Mechanisms of fertilization in mammals. In: Mastroianni L, Biggers JD, editors. Fertilization and embryonic development In Vitro. Boston: Springer; 1981. p. 81–182. http://doi.org/10.1007/978-1-4684-4016-4_6.

Zhang S, Zeng X, Ren M, Mao X, Qiao S. Novel metabolic and physiological functions of branched chain amino acids: a review. J Anim Sci Biotechnol. 2017;8:10. http://doi.org/10.1186/s40104-016-0139-z. PMid:28127425.
 


Submitted date:
09/27/2023

Accepted date:
04/24/2024

666afd66a95395308d64f524 animreprod Articles
Links & Downloads

Anim Reprod

Share this page
Page Sections