Animal Reproduction (AR)
https://animal-reproduction.org/article/doi/10.21451/1984-3143-AR2019-0043
Animal Reproduction (AR)
Congress Paper

New tools for cell reprogramming and conversion: Possible applications to livestock

Fulvio Gandolfi, Sharon Arcuri, Georgia Pennarossa, Tiziana A.L. Brevini

Downloads: 0
Views: 11

Abstract

Somatic cell nuclear transfer and iPS are both forms of radical cell reprogramming able to transform a fully differentiated cell type into a totipotent or pluripotent cell. Both processes, however, are hampered by low efficiency and, in the case of iPS, the application to livestock species is uncertain. Epigenetic manipulation has recently emerged as an efficient and robust alternative method for cell reprogramming. It is based upon the use of small molecules that are able to modify the levels of DNA methylation with 5-azacitidyne as one of the most widely used. Among a number of advantages, it includes the fact that it can be applied to domestic species including pig, dog and cat. Treated cells undergo a widespread demethylation which is followed by a renewed methylation pattern induced by specific chemical stimuli that lead to the desired phenotype. A detailed study of the mechanisms of epigenetic manipulation revealed that cell plasticity is achieved through the combined action of a reduced DNA methyl transferase activity with an active demethylation driven by the TET protein family. Surprisingly the same combination of molecular processes leads to the transformation of fibroblasts into iPS and regulate the epigenetic changes that take place during early development and, hence, during reprogramming following SCNT. Finally, it has recently emerged that mechanic stimuli in the form of a 3D cell rearrangement can significantly enhance the efficiency of epigenetic reprogramming as well as of maintenance of pluripotency. Interestingly these mechanic stimuli act on the same mechanisms both in epigenetic cell conversion with 5-Aza-CR and in iPS. We suggest that the balanced combination of epigenetic erasing, 3D cell rearrangement and chemical induction can go a long way to obtain ad hoc cell types that can fully exploit the current exiting development brought by gene editing and animal cloning in livestock production.

Keywords

cell reprogramming, epigenetic erasing, mechanosensing.

References

Alberio R, Croxall N, Allegrucci C. 2010. Pig epiblast stem cells depend on activin/nodal signaling for pluripotency and self-renewal. Stem Cells Dev, 19:1627-1636. Doi.org/10.1089/scd.2010.0012

Berdasco M, Esteller M. 2011. DNA methylation in stem cell renewal and multipotency. Stem Cell Res, Ther. 2:42. Doi.org/10.1186/scrt83.

Berg DK, Smith CS, Pearton DJ, Wells DN, Broadhurst R, Donnison M, Pfeffer PL. 2011. Trophectoderm lineage determination in cattle. Dev Cell, 20:244-255. Doi.org/10.1016/j.devcel.2011.01.003.

Brevini TAL, Pennarossa G, Attanasio L, Vanelli A, Gasparrini B, Gandolfi F. 2010. Culture conditions and signalling networks promoting the establishment of cell lines from parthenogenetic and biparental pig embryos. Stem Cell Rev. Reports, 6:484-495. Doi.org/10.1007/s12015-010-9153-2.

Brevini TAL, Gandolfi F. 2013. Pluripotency in domestic animal embryos, In: Pluripotency in Domestic Animal Cells. SpringerBriefs in Stem Cells. Springer, New York, NY. Doi.org/10.1007/978-1-4899-8053-3_2.

Brevini TAL, Pennarossa G, Rahman MM, Paffoni A, Antonini S, Ragni G, deEguileor M, Tettamanti G, Gandolfi F. 2014. Morphological and molecular changes of human granulosa cells exposed to 5-azacytidine and addressed toward muscular differentiation. Stem Cell Rev, 10:633-42. Doi.org/ 10.1007/s12015-014-9521-4.

Brevini TAL, Pennarossa G, Acocella F, Brizzola S, Zenobi A, Gandolfi F. 2016. Epigenetic conversion of adult dog skin fibroblasts into insulin-secreting cells. Vet J, 211:52-56. Doi.org/10.1016/j.tvjl.2016.02.014.

Brevini TAL, Manzoni EFM, Gandolfi F. 2018. Methylation mechanisms and biomechanical effectors controlling cell fate. Reprod Fertil Dev, 30:64-72. Doi.org/10.1071/RD17348.

Chandrakanthan V, Yeola A, Kwan JC, Oliver RA, Qiao Q, Kang YC, Zarzour P, Beck D, Boelen L, Unnikrishnan A, Villanueva JE, Nunez AC, Knezevic K, Palu C, Nasrallah R, Carnell M, Macmillan A, Whan R, Yu Y, Hardy P, Grey ST, Gladbach A, Delerue F, Ittner L, Mobbs R, Walkley CR, Purton LE, Ward RL, Wong JW, Hesson LB, Walsh W, Pimanda JE. 2016. PDGF-AB and 5-Azacytidine induce conversion of somatic cells into tissue-regenerative multipotent stem cells. Proc Natl Acad Sci USA, 113:E2306-15. Doi.org/10.1073/pnas.1518244113.

Christman JK. 2002. 5-Azacytidine and 5-aza-2[prime]-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene, 21:5483-5495.

Courtot AM, Magniez A, Oudrhiri N, Feraud O, Bacci J, Gobbo E, Proust S, Turhan AG, Bennaceur-Griscelli A. 2014. Morphological analysis of human induced pluripotent stem cells during induced differentiation and reverse programming. Biores Open Access, 3:206-216. Doi.org/10.1089/biores.2014.0028

Curcio AG, Bressan FF, Meirelles FV, Dias AJB, Curcio AG, Bressan FF, Meirelles FV, Dias AJB. 2017. Achievements and perspectives in cloned and transgenic cattle production by nuclear transfer: influence of cell type, epigenetic status and new technology. Anim Reprod, 14:1003-1013. Doi.org/10.21451/1984-3143-AR853.

Efroni S, Duttagupta R, Cheng J, Dehghani H, Hoeppner DJ, Dash C, Bazett-Jones DP, Le Grice S, McKay RD, Buetow KH, Gingeras TR, Misteli T, Meshorer E. 2008. Global transcription in pluripotent embryonic stem cells. Cell Stem Cell, 2:437-447. Doi.org/10.1016/j.stem.2008.03.021.

Epsztejn-Litman S, Feldman N, Abu-Remaileh M, Shufaro Y, Gerson A, Ueda J, Deplus R, Fuks F, Shinkai Y, Cedar H, Bergman Y. 2008. De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes. Nat Struct Mol Biol, 15:1176-1183. Doi.org/10.1038/nsmb.1476.

Esteban MA, Xu J, Yang J, Peng M, Qin D, Li W, Jiang Z, Chen J, Deng K, Zhong M, Cai J, Lai L, Pei D. 2009. Generation of induced pluripotent stem cell lines from tibetan miniature Pig. J Biol Chem, 284:17634–17640. Doi.org/10.1074/jbc.M109.008938.

Gandolfi F, Pennarossa G, Maffei S, Brevini T. 2012. Why is it so difficult to derive pluripotent stem cells in domestic ungulates? Reprod Domest Anim, 47:11-17. Doi.org/10.1111/j.1439-0531.2012.02106.x.

Gandolfi F, Brevini TAL. 2018. Stem cells and cell conversion in livestock. In: Niemann H., Wrenzycki C. (eds) Animal Biotechnology 2. Springer, Cham. Doi.org/10.1007/978-3-319-92348-2_10.

Glover TW, Coyle-Morris J, Pearce-Birge L, Berger C, Gemmill RM. 1986. DNA demethylation induced by 5-azacytidine does not affect fragile X expression. Am J Hum Genet, 38:309-318.

Grabole N, Tischler J, Hackett JA, Kim S, Tang F, Leitch HG, Magnusdottir E, Surani MA. 2013. Prdm14 promotes germline fate and naive pluripotency by repressing FGF signalling and DNA methylation. EMBO Rep, 14:629-637.Doi.org/10.1038/embor.2013.67.

Gu T-P; Guo F; Yang H; Wu H-P; Xu G-F; Liu W; Xie Z-G; Shi L; He X; Jin S; Iqbal K; Shi YG; Deng Z; Szabo PE; Pfeifer GP; Li J; Xu G-L. 2011. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature, 477:606-610.

Gurdon JB, Melton DA. 2008. Nuclear reprogramming in cells. Science, 322:1811-1815.

Habibi E, Brinkman AB, Arand J, Kroeze LI, Kerstens HHD, Matarese F, Lepikhov K, Gut M, Brun-Heath I, Hubner NC, Benedetti R, Altucci L, Jansen JH, Walter J, Gut IG, Marks H, Stunnenberg HG. 2013. Whole-genome bisulfite sequencing of two distinct interconvertible DNA methylomes of mouse embryonic stem cells. Cell Stem Cell, 13:360-369. Doi.org/10.1016/J.STEM.2013.06.002.

Hall VJ, Christensen J, Gao Y, Schmidt MH, Hyttel P. 2009. Porcine pluripotency cell signaling develops from the inner cell mass to the epiblast during early development. Dev Dyn, 238:2014-2024. Doi.org/10.1002/ dvdy.22027.

Haraguchi S, Kikuchi K, Nakai M, Tokunaga T. 2012. Establishment of self-renewing porcine embryonic stem cell-like cells by signal inhibition. J Reprod Dev, 58:707-716. Doi.org/10.1262/jrd.2012-008.

Harris DM, Hazan-Haley I, Coombes K, Bueso-Ramos C, Liu J, Liu Z, Li P, Ravoori M, Abruzzo L, Han L, Singh S, Sun M, Kundra V, Kurzrock R, Estrov Z. 2011. Transformation of human mesenchymal cells and skin fibroblasts into hematopoietic cells. PLoS One, 6:e21250. Doi.org/10.1371/journal.pone.0021250.

Hou D-R, Jin Y, Nie X-W, Zhang M-L, Ta N, Zhao L-H, Yang N, Chen Y, Wu Z-Q, Jiang H-B, Li Y-R, Sun Q-Y, Dai Y-F, Li R-F. 2016. Derivation of porcine embryonic stem-Like cells from in vitro-produced blastocyst-stage embryos. Sci Rep, 6:25838. Doi.org/10.1038/srep25838.

Hu X, Zhang L, Mao SQ, Li Z, Chen J, Zhang RR, Wu HP, Gao J, Guo F, Liu W, Xu GF, Dai HQ, Shi YG, Li X, Hu B, Tang F, Pei D, Xu GL. 2014. Tet and TDG mediate DNA demethylation essential for mesenchymal-to-epithelial transition in somatic cell reprogramming. Cell Stem Cell, 14:512-522. Doi.org/10.1016/j.stem.2014.01.001

Hysolli E, Tanaka Y, Su J, Kim KY, Zhong T, Janknecht R, Zhou XL, Geng L, Qiu C, Pan X, Jung YW, Cheng J, Lu J, Zhong M, Weissman SM, Park IH. 2016. Regulation of the DNA methylation landscape in human somatic cell reprogramming by the miR-29 family. Stem Cell Reports, 7:43-54. Doi.org/10.1016/j.stemcr.2016.05.014.

Ito S, D/’Alessio AC, Taranova O V Hong K, Sowers LC, Zhang Y. 2010. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature, 466:1129-1133.

Jasnos L, Aksoy FB, Hersi HM, Wantuch S, Sawado T. 2013. Identifying division symmetry of mouse embryonic stem cells: negative impact of dna methyltransferases on symmetric self-renewal. Stem Cell Reports, 1:360-369. Doi.org/10.1016/J.STEMCR. 2013.08.005.

Jones PA. 1985. Effects of 5-azacytidine and its 2’-deoxyderivative on cell differentiation and DNA methylation. Pharmacol Ther, 28:17-27. Doi.org/0163-7258(85)90080-4 [pii].

Koh S, Piedrahita JA. 2014. From “ES-like” cells to induced pluripotent stem cells: a historical perspective in domestic animals. Theriogenology, 81:103-111. Doi.org/10.1016/j.theriogenology.2013.09.009.

Kumar D, Talluri TR, Anand T, Kues WA. 2015. Induced pluripotent stem cells: Mechanisms, achievements and perspectives in farm animals. World J Stem Cells, 7:315-328. Doi.org/10.4252/wjsc.v7.i2.315.

Lai D, Wang Y, Sun J, Chen Y, Li T, Wu Y, Guo L, Wei C. 2015. Derivation and characterization of human embryonic stem cells on human amnion epithelial cells. Sci Rep, 5:10014. Doi.org/10.1038/srep10014

Leitch HG, McEwen KR, Turp A, Encheva V, Carroll T, Grabole N, Mansfield W, Nashun B, Knezovich JG, Smith A, Surani MA, Hajkova P. 2013. Naive pluripotency is associated with global DNA hypomethylation. Nat Struct Mol Biol, 20:311-316. Doi.org/10.1038/nsmb.2510.

Li J-Y, Pu M-T, Hirasawa R, Li B-Z, Huang Y-N, Zeng R, Jing N-H, Chen T, Li E, Sasaki H, Xu G-L. 2007. Synergistic function of DNA methyltransferases Dnmt3a and Dnmt3b in the methylation of Oct4 and Nanog. Mol Cell Biol, 27:8748-8759. Doi.org/10.1128/ MCB.01380-07.

Li Y, Cang M, Lee AS, Zhang K, Liu D. 2011. Reprogramming of sheep fibroblasts into pluripotency under a drug-inducible expression of mouse-derived defined factors. PLoS One, 6:e15947. Doi.org/10.1371/ journal.pone.0015947.

Liang G, Zhang Y. 2013. Embryonic stem cell and induced pluripotent stem cell: an epigenetic perspective. Cell Res, 23:49-69. Doi.org/10.1038/cr.2012.175.

Ma Y, Yu T, Cai Y, Wang H. 2018. Preserving self-renewal of porcine pluripotent stem cells in serum-free 3i culture condition and independent of LIF and b-FGF cytokines. Cell Death Discov, 4:21. Doi.org/10.1038/ s41420-017-0015-4.

Manzoni EFM, Pennarossa G, Deeguileor M, Tettamanti G, Gandolfi F, Brevini TAL. 2016. 5-azacytidine affects TET2 and histone transcription and reshapes morphology of human skin fibroblasts. Sci Rep, 6:37017. Doi.org/10.1038/srep37017.

Meshorer E, Misteli T. 2006. Chromatin in pluripotent embryonic stem cells and differentiation. Nat Rev Mol Cell Biol, 7:540-546. Doi.org/10.1038/nrm1938.

Meshorer E, Yellajoshula D, George E, Scambler PJ, Brown DT, Misteli T. 2006. Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev Cell, 10:105-116. Doi.org/10.1016/j.devcel. 2005.10.017.

Mirakhori F, Zeynali B, Kiani S, Baharvand H. 2015. Brief azacytidine step allows the conversion of suspension human fibroblasts into neural progenitor-like cells. Cell J, 17:153-158.

Mohr F, Döhner K, Buske C, Rawat VPS. 2011. TET Genes: new players in DNA demethylation and important determinants for stemness. Exp Hematol, 39:272-281. Doi.org/10.1016/J.EXPHEM.2010.12.004.

Oda M, Kumaki Y, Shigeta M, Jakt LM, Matsuoka C, Yamagiwa A, Niwa H, Okano M. 2013. DNA methylation restricts lineage-specific functions of transcription factor Gata4 during embryonic stem cell differentiation. PLoS Genet, 9:e1003574. Doi.org/10.1371/journal.pgen.1003574.

Ohgushi M, Minaguchi M, Sasai Y. 2015. Rho-signaling-directed YAP/TAZ activity underlies the Long-term survival and expansion of human embryonic stem cells. Cell Stem Cell, 17:448-461. Doi.org/10.1016/J.STEM.2015.07.009.

Pennarossa G, Maffei S, Campagnol M, Tarantini L, Gandolfi F, Brevini TAL. 2013. Brief demethylation step allows the conversion of adult human skin fibroblasts into insulin-secreting cells. Proc Natl Acad Sci USA, 110:8948-8953. Doi.org/10.1073/pnas. 1220637110.

Pennarossa G, Maffei S, Campagnol M, Rahman MM, Brevini TAL, Gandolfi F. 2014. Reprogramming of pig dermal fibroblast into insulin secreting cells by a brief exposure to 5-aza-cytidine. Stem Cell Rev, 10:31-43. Doi.org/10.1007/s12015-013-9477-9

Pennarossa G, Santoro R, Manzoni EFM, Pesce M, Gandolfi F, Brevini TAL. 2017. Epigenetic erasing and pancreatic differentiation of dermal fibroblasts into insulin-producing cells are boosted by the use of low-stiffness substrate. Stem Cell Rev, 14:398-411. Doi.org/10.1007/s12015-017-9799-0.

Pennarossa G, Manzoni EFM, Ledda S, deEguileor M, Gandolfi F, Brevini TAL. 2019. Use of a PTFE Micro-Bioreactor to Promote 3D Cell rearrangement and maintain high plasticity in epigenetically erased fibroblasts. Stem Cell Rev, 15:82-92. Doi.org/10.1007/ s12015-018-9862-5.

Rossant J, Tam PPL. 2009. Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse. Development, 136:701-713. Doi.org/10.1242/dev.017178.

Rossant J. 2015. Mouse and human blastocyst-derived stem cells: vive les differences. Development, 142:9-12. Doi.org/10.1242/dev.115451.

Sarvi F, Arbatan T, Chan PPY, Shen WA. 2013. A novel technique for the formation of embryoid bodies inside liquid marbles. RSC Adv, 3:14501-14508. Doi.org/10.1039/C3RA40364E.

Sathananthan H, Pera M, Trounson A. 2002. The fine structure of human embryonic stem cells. Reprod Biomed Online, 4:56-61.

Smith AG. 2001. Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol, 17:435-462.

Soto DA, Ross PJ. 2016. Pluripotent stem cells and livestock genetic engineering. Transgenic Res, 25:289-306. Doi.org/10.1007/s11248-016-9929-5.

Sumer H, Liu J, Malaver-Ortega LF, Lim ML, Khodadadi K, Verma PJ. 2011. NANOG is a key factor for induction of pluripotency in bovine adult fibroblasts. J Anim Sci, 89:2708-2716.Doi.org/10.2527/ jas.2010-3666.

Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A. 2009. Conversion of 5- methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 324:930-935. Doi.org/10.1126/science.1170116.

Takahashi K, Yamanaka S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126:663-676. Doi.org/10.1016/j.cell.2006.07.024.

Talbot NC, Blomberg le A. 2008. The pursuit of ES cell lines of domesticated ungulates. Stem Cell Rev, 4:235-254. Doi.org/10.1007/s12015-008-9026-0.

Tamada H, Van Thuan N, Reed P, Nelson D, Katoku-Kikyo N, Wudel J, Wakayama T, Kikyo N. 2006. Chromatin decondensation and nuclear reprogramming by nucleoplasmin. Mol Cell Biol, 26:1259-1271. Doi.org/10.1128/MCB.26.4.1259-1271.2006.

Taylor SM, Jones PA. 1979. Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell, 17:771-779. Doi.org/0092-8674(79)90317-9 [pii].

Telugu BPVL, Ezashi T, Sinha S, Alexenko AP, Spate L, Prather RS, Roberts RM. 2011. Leukemia inhibitory factor (LIF)-dependent, pluripotent stem cells established from inner cell mass of porcine embryos. J Biol Chem, 286:28948-28953. Doi.org/ 10.1074/ JBC.M111.229468

Vadivelu RK, Ooi CH, Yao RQ, Tello Velasquez J, Pastrana E, Diaz-Nido J, Lim F, Ekberg JA, Nguyen NT, St John JA. 2015. Generation of three-dimensional multiple spheroid model of olfactory ensheathing cells using floating liquid marbles. Sci Rep, 5:15083. Doi.org/10.1038/srep15083.

Van Eijk MJT, Van Rooijen MA, Modina S, Scesi L, Folkers G, Van Tol HTA, Bevers MM, Fisher SR, Lewin HA, Rakacolli D, Galli C, De Vaureix C, Trounson AO, Mummery CL, Gandolfi F. 1999. Molecular cloning, genetic mapping, and developmental expression of bovine POU5F1. Biol Reprod, 60:1093-1103.

Varelas X, Sakuma R, Samavarchi-Tehrani P, Peerani R, Rao BM, Dembowy J, Yaffe MB, Zandstra PW, Wrana JL. 2008. TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat Cell Biol, 10:837-848. Doi.org/10.1038/ncb1748.

West FD, Uhl EW, Liu Y, Stowe H, Lu Y, Yu P, Gallegos-Cardenas A, Pratt SL, Stice SL. 2011. Brief report: chimeric pigs produced from induced pluripotent stem cells demonstrate germline transmission and no evidence of tumor formation in young pigs. Stem Cells, 29:1640-1643.

Wu Z, Chen J, Ren J, Bao L, Liao J, Cui C, Rao L, Li H, Gu Y, Dai H, Zhu H, Teng X, Cheng L, Xiao L. 2009. Generation of pig induced pluripotent stem cells with a drug-inducible system. J Mol Cell Biol, 1:46-54. Doi.org/mjp003 [pii]10.1093/jmcb/mjp003.

Yu C, Ji SY, Dang YJ, Sha QQ, Yuan YF, Zhou JJ, Yan LY, Qiao J, Tang F, Fan HY. 2016. Oocyte-expressed yes-associated protein is a key activator of the early zygotic genome in mouse. Cell Res, 26:275-287. Doi.org/10.1038/cr.2016.20.

5d52b9fd0e8825e34adaee82 animreprod Articles
Links & Downloads

Anim Reprod

Share this page
Page Sections